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The problem of forced convection in a microstructural fluid in a plane channel 
under thermal boundary conditions of the third kind is solved. It is shown that 
taking account of the microstructure of the fluid leads to a decrease in the 
values of the temperature in the channel and the heat flow at the wall. 

The fluid flowing in many heat-exchange systems is cooled or heated by the use of 
another fluid flowing in the channels of the system. As was noted in [I], in a number of 
cases the application of boundary conditions of the third kind is a good approximation for 
calculation of heat exchange in such systems when it is necessary to solve a coupled problem. 

We consider the problem of heat exchange in a heat-conducting micropolar fluid (MPF) 
that is flowing in a plane channel, the theory of which was proposed in [2]. We neglect the 
axial heat conduction, energy dissipation, and compressibility of the fluid, and also the 
body forces and moments. We assume the physical properties of the MPF to be constant and the 
flow to be stabilized. Let the temperature of the flowing fluid and the temperature of the 
MPF in the initial section equal, respectively, TI and To. We are given the local coeffi- 
cient of heat transfer from the inner surface of the wall to the surrounding medium K'. The 
y axis of the assumed coordinate system is perpendicular to the planes of the channel at a 
distance of 2h from each of them and the x axis coincides with the central line of the chan- 
nel. The MPF flows under the action of a constant pressure gradient dP/dx, where the orien- 
tation of the microparticles coincides with the z axis. 

For a given flow geometry the term connected with microrotations does not enter into the 
heat equation, as is the case in general [2]. In the problem being considered the microstruc- 
ture of the fluid proves to have an effect on heat exchange by means of the variation of the 
hydrodynamic velocity profile, and for the description of heat exchange with the above 
assumptions it is necessary to solve the system of equations 
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In studies concerning the hydrodynamics of a MPF, there has not yet been a solution of 
the question of the most acceptable physically valid boundary conditions for the vector of 
microrotation. If for the translational velocity v we always assume a boundary condition of 
adhesion consisting of the equality of v on the solid surface to the velocity at the same 
boundary, then for the microrotation we assumed various types of boundary conditions. 

Mostly, for the solution of the problems we assume the so-called condition of total 
adhesion, for which on the solid--MPF boundary the velocity v and the microrotation ~ coincide 
with the velocity V and the angular velocity ~ of the boundary [2-9]: 

v]r=V, v [ r : ~ .  (4) 
However, it is natural to assume that the particles of the MPF in the wall layer are all 
pulled toward the rigid boundary. This assumption received experimental confirmation in [I0]. 
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Analytically solving the problem of the flow of blood in a cylindrical capillary, Ariman 
et al. [I]] proposed for ~ the boundary condition 

The use  o f  t h i s  c o n d i t i o n  l e a d s  to  a v e l o c i t y  p r o f i l e  t h a t  i s  i n  good ag reemen t  w i t h  the  ex -  
p e r i m e n t a l  r e s u l t s  o f  [ 1 0 ] .  I t  i s  e v i d e n t  t h a t  c o n d i t i o n s  o f  t y p e s  ( 4 ) a n d  (5) a r e  o n l y  p a r -  
t i c u l a r  c a s e s :  t he  f i r s t  d e n o t e s  t h e  maximum e f f e c t  o f  t h e  w a l l  on t h e  r o t a t i o n  of  p a r t i c l e s ,  
when t he  l a t t e r  do n o t  r o t a t e ,  and the  second  d e n o t e s  t h e  a b s e n c e  o f  moment s t r e s s e s  a t  t he  
b o u n d a r y .  

The maximum c o n t r i b u t i o n  to  t he  d e v e l o p m e n t  o f  p h y s i c a l l y  a p p l i c a b l e  b o u n d a r y  c o n d i t i o n s  
o f  g e n e r a l  fo rm was i n t r o d u c e d  i n  [12 ] ,  i n  which a dynamic  c o n d i t i o n  i s  p r o p o s e d ,  a c c o r d i n g  
to  which  t he  m a g n i t u d e  of  t he  m i c r o r o t a t i o n  i s  p r o p o r t i o n a l  to  t h e  s u r f a c e  d e n s i t y  o f  t he  
micromoments : 

(C~kVk) [r = (ram nk)i r. (6) 

Here the case aik § ~ corresponds to total adhesion (4), and aik § 0 corresponds to a condi- 
tion of type (5). 

Recently, Kirwan and Newman obtained a generalization of a single boundary condition 
[13]. It consists of equating ~ on the boundary to an arbitrary constant quantity ~w' on 
which is superimposed only the sy~netry condition on the opposite boundaries. In the problem 
being considered this is 

vz(h) = - -  ~w,  v,  ( - -  h) = ~w,. ( 7 )  

In our opinion, in the majority of problems on the flow of a MPF it is not necessary to re- 
sort to this form of the boundary conditions, since it leads to a complex analysis of the 
dependence on its solution. 

In [|4] a kinematic condition of type 

0~ 
~lr = ~ -  ~ l V ) I r  (8) 

was p r o p o s e d ,  where  0 ~ = ~ 1 .  The c o n d i t i o n s  ( 6 ) ,  ( 7 ) ,  and ( 8 ) ,  which  a r e  d i f f e r e n t  i n  fo rm,  
have the same physical sense- they indicate the presence on the boundary of microrotations, 
the magnitude of which can be different from the vortex and either is given or is determined 
by the corresponding coefficients. However, condition (8) admits an especially simple, physi- 
cal interpretation; therefore it is precisely this that we use as the boundary condition for 
~. The coefficient ~ in the general case is determined by the magnitude of interaction of 
particles of a MPF both with a solid boundary and with each other. The value a = 0 is due 
mainly to the interaction of the wall layer of the MPF with the boundary, when it is so large 
that the particles are not pulled toward the rigid surface. A characteristic feature of the 
equality a = ! is evidently the complete absence of rotational friction between the particles 
of the liquid, since for ~ = (I/2) (curl v)JF the difference of the translational velocities 
of the particles that are neighboring with respect to the transverse coordinate does not 
cause the appearance of distributed surface pairs. In the given case the separate particles 
of the microelement of the volume do not ro.tate with respect to the latter, the stress tensor 
is symmetric, and we are concerned with an ordinary Newtonian liquid. 

Using the boundary conditions 

v (_+ h) = O, ~ (_+ h) = ~ -  (curl v)l~=~h, 

we solve the system of equations (I)-(2), as a result of which we obtain the following ex- 
pression for Vx: 

v x _ . v o [ l _ _ 9 ~ _  2• - - ~ )  c thk  ( c h k g / h  1 ) ]  (9)  
h 2 + 2 t t + •  k ehk  ' 

where 

d P  h 2 " . k2 = .2~t-+- • • h2" 
vo ~ d x  2~t -l- • ' ~ + • Y 

The study of hydrodynamics and heat exchange in a fluid with a substructure within the 
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framework of the theory of a Newtonian liquid can lead to inaccurate results. For example, 
in the case of the calculation of the velocity field and temperature during flow of blood 
with given power of hematocrit H in channels of various cross sections we use a parabolic 
law of velocity distribution over the cross section. However, actually, in thin channels, 
we observe a deviation from this law. For shear velocities z~250 sec -I in capillaries with 
radius ro~ 5.102 vm the effective viscosity of the blood depends on the radius [4]; therefore 
a calculation made according to classical formulas of the velocity field and the temperature 
in thin capillaries gives inaccurate results. At the same time, using, for example, numerical 
values of the coefficients ~, ~, and y, obtained in [II] for blood with H = 40%, we can show 
that for its flow in a plane channel with 2h = 40 vm, taking account of the microstructure 
within the framework of the theory of a MPF leads to a decrease by a factor of 1.3 in the 
calculated value of the velocity on the axis for ~ = 0. We emphasize that we are considering 
the case of a small shear velocity, when the effect of the axial and wall effects is compar- 
atively small [4]. 

Thermal boundary conditions of the third kind have the form 

OT 
= h ) -  T I. ( 1 o )  

S u b s t i t u t i n g  (9) i n t o  (3) and c o n v e r t i n g  the  e q u a t i o n  o b t a i n e d  and a l s o  (10) i n t o  d i m e n s i o n -  
l e s s  form, we obtain 

~O dO 
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where 

3[ cth (c  I] 
T -- Tt x 2~ I~" 2K'h 

O - - - -  ; x - - - -  ; Pe  a v n  . B i : - - ;  
To- -  Tt Pe2h a Z 

v (n) i s  t he  a v e r a g e  v e l o c i t y  o f  a Newtonian  l i q u i d  w i t h  s h e a r  v i s c o s i t y  ~ + •  i n  c h a n n e l  o f  
. a v  . 

d i m e n s i o n  2h. 

We d e t e r m i n e  the  g e n e r a l  N u s s e l t  number [1] Nu = 2Kh/~, where K i s  the  h e a t - t r a n s f e r  
c o e f f i c i e n t  f rom the  l i q u i d  i n  the  c h a n n e l  t o  the  s u r r o u n d i n g  medium. We can show t h a t  

1 
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/ 

The p r ob l em  ( 1 1 ) - ( 1 2 )  was n u m e r i c a l l y  s o l v e d  on a BESM-6 compute r  by the  f i n i t e - d i f f e r -  
ence  method .  I n  [15] t he  p r e s e n c e  o f  a d i m e n s i o n a l  e f f e c t  i n  t he  h e a t  exchange  i n  a MPF i s  
i n d i c a t e d :  There  i s  a dependence  o f  Nu on the  t r a n s v e r s e  d i m e n s i o n  o f  t he  c h a n n e l .  I t  
t u r n e d  ou t  t h a t  f o r  a l l  v a l u e s  o f  Bi the  d i m e n s i o n a l  e f f e c t ,  whose m a g n i t u d e  i s  d e t e r m i n e d  
by t he  m i c r o s t r u c t u r e  and t r a n s v e r s e  d i m e n s i o n  o f  t he  c h a n n e l ,  p r o v e s  t o  have  o n l y  a sma l l  
e f f e c t  on Nu: I n  the  c o n s i d e r e d  r a n g e  o f  p a r a m e t e r s  (k = 0 . 1 - 5 ,  r = •  + •  = 0 . 4 - 1 0 / 7 )  
w i t h  a d e c r e a s e  i n  h i t  d e c r e a s e s ,  bu t  n o t  by more t h a n  2.6%. A sma l l  d i f f e r e n c e  o f  Nu i n  a 
MPF and a Newton ian  l i q u i d  i s  o b s e r v e d  a l s o  f o r  the  c a s e  o f  t he rma l  b o u n d a r y  c o n d i t i o n s  o f  
the first and second kinds [16]. The solution of the problem of the exchange between a 
micropolar fluid and the walls of the channel by thermal dissipation shows that the decrease 
in Nu calculated within the framework of the MPF theory, in comparison with its value for a 
Newtonian liquid, does not exceed 18%. All these results indicate that there is considerably 
less variation of the calculated values of Nu with account of the microstructure of the fluid 
than in [5-7]. 

The boundary conditions of the third kind for Bi + ~ are converted into boundary condi- 
tions of the first kind, for which results of [5-7] are obtained. In this case the heat- 
transfer coefficient K is the ordinary heat-transfer coefficient appearing in the Newton-- 
Richman law. The difference between the values of Nu in [5-7] and in our results is caused 
by a different determination of the heat-transfer coefficient, which represents the ratio of 
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Fig .  2 
Fig. I. Temperature field as a function of Bi for ~ = 0.I: 1, 2, 3, 4) k = 
0.1; s = I0/7; 1', 2', 3', 4') s = O; I, I') Bi = 104; 2, 2') Bi = 20; 3, 3') 
Bi = 4; 4, 4') Bi = 2. 

Fig. 2. Temperature fieldalong the length of the channel as a function of the quanti- 
ties kand E forBi=2;1) x=0.2; E =10/7; k = 0.i; 2) 0.2; 10/7; i; 3) 0.2; 
10/7; 2; 4) 0.2; 0.4; 0.1; 5) 0.2; 0; k -- anyvalue; 6) 0.i; 10/7; 0.1; 7) 0.i; 
10/7; 2; 8) 0.1; 0.4; 0.1; 9) 0.1; O; 10) 0.06; 10/7; 0.1; 11) 0.06; 10/7; 2; 
12) 0.06; O; 13) 0.02; 10/7; 0.1; 14) 0.02; 10/7; 2; 15) 0.02; O. 

the thermal flux at the wall to the temperature head. The latter can be determined as the 
difference of two constant temperatures, for example, that of the wall and that of the input 
section, and also as the difference in temperature of the wall and the average bulk tempera- 
ture. 

Using the first method of determining the heat-transfer coefficient, the authors of 
[6-7] showed that calculation of Nu within the framework of the MpF theory for definite values 
of microstructural parameters leads to its value being one half that of a Newtonian liquid. 
On this basis, for example, in [6], a conclusion is made concerning the possibility of a con- 
siderable decrease in the practical objectives of the~rate of heat transfer during flow of a 
liquid in a channel "by means of attaining still greater micropolarity of a Newtonian solvent." 
But the analogous result can be more simply attained for the ordinary decrease in flow rate of 
the same fluid, which is equivalent to an "increase in micropolarity" when for the same pres- 
sure gradient there is a decrease in flow rate. In practical objectives it is important to 
explain the possibility of varying the rate of heat transfer, eliminating from it the contri- 
bution due to a decrease in flow rate of the fluid. This enables us to perform the second 
method of determining the heat-transfer coefficient, which we also used. 

In order to determine K with the help of the mean bulk temperature we took into account 
that the change in magnitude of the thermal flux at the wall can be caused by a change in 
flow rate of the liquid, and not by the same process of heat exchange. Therefore for the 
second method of determining the heat-transfer coefficient its magnitude is characterized, 
first of all, by the relation between the processes of heat transfer by convection and ther- 
mal conduction. Thus, the small difference in the values of Nu obtained by us within the 
framework of the theories of MPF and of a Newtonian liquid indicate that this relation in 
both cases varies little. 

However, the values of the thermal flux at the wall for the same pressure gradients in 
these cases can strongly differ, which is due to the dependence of the volume flow rate of 
the liquid on its microstructure. Thus, for example, taking into account the microstructure 
for k = 0.I, e = 10/7, ~ = 0, Bi = 2, and ~ = 0.3 leads to a decrease in the thermal flux at 

the wall qw by a factor of 2.3. 

The temperature is calculated in such a way that its values in the framework of the 
theories of MPF and a Newtonian liquid are compared for various volume flow rates, but for 
the same pressure gradients. In this case we determine the number Pe entering in the dimen- 
sionless length ~, not in terms of the true velocity which the MPF has at the moment being 
considered, but in terms of the velocity with which a Newtonian liquid with viscosity ~ + 4/2 
flows in the channel being considered. Otherwise, we would be obliged to make the correspon- 
ding calculation in order to explain how the dimensional length of the channel corresponds 
to some temperature profile. 
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From Fig. ] we see that in the entire range of variation of Bi, the temperature fields 
calculated for the same liquid in the framework of the theory of a Newtonian liquid (O(N)) 
and the theory of a MPF (O(MPF)) considerably differ from each other. An analysis of (9) 
shows that the increase in ~ for all constants of the remaining parameters is formally 
equivalent to a decrease in s for the constants k and ~; therefore the problem was solved 
only for ~ = O. However, the existence of results of a numerical calculation obtained for 
different E enables us when necessary to construct the temperature fields for other values of 
~. The ratio o(N)/o(MPF) is especially large for large Bi, i.e., for the case in which the 
third-order boundary conditions are close to the first-order boundary conditions. For exam- 
ple, for Bi = ]0 ~, e = ]0/7, and k = 0.] o(N)(0.2; O) /O(MPF) (0.2; O) = 2.6. For the case 
mentioned above of the flow of blood for a boundary condition of type (5), written for a 
Cartesian coordinate system, for Bi = 2 @(N) (0.2; 0)/o(MPF)(0.2; 0) = 1.13. The tempera- 
ture at the given point of the channel increases with an increase in k and a decrease in e 
(Fig. 2). Thus, the thinner the capillary along which the investigated microstructural fluid 
flows, the greater will be the difference in the temperature fields calculated by neglecting 
the microstructure and using the MPF theory. 

The considerable difference in temperatures in the initial section of the channel ob- 
tained within the framework of the various continuum approaches with consideration of hydro- 
dynamics and heat exchange in a liquid flowing in thin channels makes it necessary in a num- 
ber of cases to take into account microstructures for calculation of the temperature fields 
in microstructural fluids. 

NOTATION 

T is the temperature; ~, ~, and T, the coefficients of viscosity of a micropolar fluid; 
Vx and ~z are, respectively, the nonzero components of the vectors of velocity and mlcrorota- 
tion; mik , tensor of the distributed surface pairs (micromoments); ~ik, coefficients of the 
rotational surface friction; nk, the normal to the surface; % and a are, respectively, the 
coefficients of thermal conductivity and of diffusivity of the micropolar fluid. 
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